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Resonance in the collision of two discrete intrinsic localized excitations

David Cai, A. R. Bishop, and Niels Gro”nbech-Jensen
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 10 June 1997!

The collision dynamics of two solitonlike localized excitations in a nonintegrable discrete
(111)-dimensional nonlinear Schro¨dinger system is studied numerically. It is demonstrated that the collision
dynamics exhibits a complicated resonance structure of interlacing bound-state regions and escape regions of
localized excitations with a sensitive dependence on the incoming energies of the localized excitations. We
emphasize that this resonance is a combined effect of discreteness and nonintegrability of the system and
contrast it with topological kink-antikink collisions inf4 and related systems.@S1063-651X~97!06811-6#

PACS number~s!: 42.65.Tg, 63.20.Pw, 46.10.1z, 42.81.Dp
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Intrinsic localized excitations are a longstanding and i
portant topic in the context of intrinsic collapse to se
localized states in nonlinear systems, which has wide ph
cal significance in plasmas, fluids, optics, solid-state,
biomolecular modeling@1,2#. Pure (111)-dimensional inte-
grable systems provide rigorous examples of self-locali
states in the form of solitons and are by now well understo
@3,4#. In particular, the interaction of these solitons can
simply described as pure elastic collisions with ‘‘spac
shifts. The interaction dynamics is simple in the sense
solitons do not interact in the nonlinear spectral space fr
the inverse scattering transform~IST! viewpoint. In a realis-
tic physical setting, complete integrability is often destroy
by physical ‘‘perturbations’’ such as integrability-breakin
terms in partial differential equations, dimensionality, latti
discreteness, disorder, and fluctuations~quantum and ther-
mal! @1,2,5#. As a consequence, mechanisms controlling
collapse to stable localized excitations become physic
more complicated and are mathematically less well und
stood. Recently,discreteintrinsic localized excitations hav
been increasingly studied, as they appear to be generall
bust objects and their existence does not require mathem
cally stringent integrability@6#. The existence and stability o
these excitations are consequences of the combined effe
discreteness and nonlinearity of the system@6–9#. Some rig-
orous mathematical results regarding their existence and
bility have been obtained via, e.g., the application of impli
function theorems@10–12#. Many aspects of the intrinsic lo
calized states have been studied by the rotating-wave
proximation@8,13# or numerically more exact methods su
as the Newton iteration method@14–16#. Full dynamical
simulations have also been performed to illustrate dynam
properties of these excitations~see, e.g.,@17–27#!. However,
most of these studies have concentrated mainly on si
discrete localized excitations. The question of how these
citations interact is yet to receive much attention@28#. Obvi-
ously, addressing this issue is a natural and important ste
extending our understanding of the dynamics of discrete
calized excitations in spite of analytical and numerical di
culties involved in this pursuit.

In the present work, we undertake a detailed numer
study of the collision of two localized excitations in a di
561063-651X/97/56~6!/7246~7!/$10.00
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crete nonlinear Schro¨dinger~DNLS! system, which is a con-
tinuously tunable, generally nonintegrable system, with
completely integrable Ablowitz-Ladik equation as one lim
@9,29#. For this system, the existence, stability, and vario
other aspects of a single solitonlike localized excitation ha
been clarified using perturbation theories based on, e.g.
inverse scattering transform and Melnikov analysis@9,30–
33#. As these works have demonstrated, this system en
sulates many important issues involved in studies of intrin
localized excitations in a theoretical framework of conce
tual simplicity and analytical tractability. We emphasize th
this DNLS system has very rich dynamics, which the syst
in its integrable limit does not possess either in the discr
form or in the continuous limit. On the basis of a caref
numerical study, we will demonstrate below that the inter
tion of two localized excitations has a complicated resona
structure. Namely, the collision process exhibits a series
resonant trapping~bound states! and escaping~transmission!
of the localized excitations with a sensitive dependence
their incoming energies. This should be contrasted with
two integrable cases. On the one hand, the interaction of
solitons in the Ablowitz-Ladik system is elastic due to int
grability, therefore lending such a resonance structure imp
sible. On the other hand, the interaction of two solitons in
continuous limit, in which our system becomes the co
pletely integrable nonlinear Schro¨dinger equation, has agai
simple elastic dynamics without any resonance. Thus
resonance structure is a combined effect of discreteness
nonintegrability. In the following, we will first briefly review
the dynamics of a single localized excitation to set the st
for our main work, i.e., the collision dynamics of two suc
structures. Then we will present detailed results of the re
nance structure in this system.

The one-dimensional DNLS equation we study is@9#

i ċn52~cn111cn21!2@m~cn111cn21!12ncn#ucnu2,
~1!

where the overdot stands for the derivative with respec
time t, n is a site index, andm>0. This system possesses th
Hamiltonian
7246 © 1997 The American Physical Society
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H52(
n

~cncn11* 1cn* cn11!2
2n

m (
n

ucnu2

1
2n

m2 (
n

ln~11mucnu2! ~2!

with the deformed Poisson brackets

$cn ,cm* %5 i ~11mucnu2!dnm , ~3!

$cn ,cm%5$cn* ,cm* %50. ~4!

In general, dynamical variablesB andC obey

$B,C%5 i(
n

S ]B

]cn

]C

]cn*
2

]B

]cn*
]C

]cn
D ~11mucnu2!. ~5!

Equation~1! is the equation of motion

ċn5$H,cn%. ~6!

In addition to the conserved energyH, the quantity

N5
1

m (
n

ln~11mucnu2! ~7!

is also conserved and serves as a norm. These conse
quantities were frequently monitored in our numerical sim
lations to ensure accuracy of the numerical schemes. In
integrable Ablowitz-Ladik limit, a single localized excitatio
is an Ablowitz-Ladik soliton@9#

cn5sinh b sech@b~n2x!#eia~n2x!1 is, ~8!

the parameters of which obey

ḃ50, ~9!

ȧ50, ~10!

ẋ5
2 sinhb

b
sin a, ~11!

ṡ52 cosa coshb12a sina
sinhb

b
. ~12!

In the perturbed case, to the first order inn in the adiabatic
approximation, an IST-based perturbation theory leads
localized excitation with the same functional form as Eq.~8!
and perturbed dynamics for the parameters. We will use
functional form~8! as the initial condition for the localized
excitations in our numerical simulations~see below!. The
dynamics of the parameters now become@34# ~for details,
see@30#!

ḃ50, ~13!

ȧ52
]

]x
Heff , ~14!

ẋ5
]

]a
Heff ~15!
ved
-
he

a

is

with

Heff5K1V, ~16!

K52
2 sinhb

b
sina, ~17!

V52n(
s51

`
4p2s sinh2b

b3 sinh~p2s/b!
cos~2psx!. ~18!

This gives rise to the following picture for the motion of
single localized structure: It can be regarded as a point
ticle described by the general coordinates (x,a) in an effec-
tive periodic potential, i.e., a Peierls-Nabarro barrier.

Next we turn to the demonstration of the richness of
system~1! through the interaction dynamics oftwo localized
excitations using full numerical simulations of the syste
~1!. As noted above, forn50, the integrable limit of Eq.~1!,
two solitons will simply collide elastically, passing throug
each other with the same asymptotic velocity, before a
after collision, at large separations. The collision is signifi
only by a ‘‘space shift’’ in the collision region. Likewise, o
approaching the continuum limit, the nonintegrability b
comes weaker and weaker and we again have an integr
soliton collision case in the continuum limit. Due to noni
tegrability and discreteness, it turns out that collisions of t
localized excitations withnÞ0 have a very complicated dy
namics and manifest intriguing resonance structures. As
can see below, some subtleties in the collisions indicat
different mechanism from that which has been learned in
collision dynamics of a topological kink and an antikink
the continuousf4 system, modified double sine-Gordon sy
tems, or related kink interactions with a point impurity@35–
39#.

First we discuss the collision of two localized excitatio
with equal amplitudes. The numerical simulation of this d
namics in system~1! is implemented as follows. The lattic
of the system is indexed fromn50 to n5N21. The bound-
ary conditions are reflecting, i.e.,

c215c1 , cN225cN . ~19!

With these boundary conditions, in the regionn,0, we cre-
ate a mirror image of the system ofn.0. As justified above
by perturbation theory, we use the functional form~8! as our
initial localized state situated atx0 , which is chosen suffi-
ciently far fromn50 that we can view the initial condition
for the system as two widely separated localized excitati
~one is the mirror image in then,0 region! with exponen-
tially small overlap aroundn50. Since we set the collision
region nearn50, the other end of the system has basica
vanishingcn . For t.0, this localized excitation travels to
wardsn50 and collides with its mirror image. We chose
sufficiently largeN to avoid boundary effects, such as r
flected radiations from theN21 end. In our simulations
typically, N5500 was used with the choice ofb;1 for the
localized excitation~8!. This size is sufficiently large to
minimize boundary effects in the collision region nearn50
while it is not too large to exact our computing resources

Now we describe the resonance phenomenon in the
of varying a. In simulations, the nonintegrable parametern
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should not be too large; otherwise a localized state initializ
with the soliton form~8! will change its shape greatly by
emitting strong radiation and the evolution of this localize
state will have severe radiative effects. Thusn520.1 was
used. As can be expected, fora!p, the incoming velocity
of the localized excitation is a monotonically increasin
function of uau. This was indeed confirmed in our numeric
simulations. We controlled the initial velocity of a localize
excitation by controlling the value of the parametera. For
large incoming velocities, we observed that, after a localiz
excitation collides with its mirror image, they separate. Th
do not return to execute a second collision. A typical traje
tory of this case is shown in Fig. 1. The trajectory shown
the temporal trace of the position of the maximum density
ucnu. The interpolated maximum point at timet is obtained
via the parabolic Simpson interpolation algorithm, using t
first three largest amplitudes out of the set of$ucn(t)u, all n%
and treatingn as if it were a continuous variable, whence th
position of the interpolated maximum is a continuous va
able. Note that we only simulated the system~1! for n>0
and that then,0 portion of Fig. 1 is merely a mirror reflec
tion of the right-hand side of the figure, plotted graphically
give a sense of symmetry. This graphical convention will
used for all the remaining trajectory plots. For an incomi
velocity greater than the critical value,Vin,c50.1837, only
this type of separating state is observed. The measured
cape velocity as a function of the incoming velocity displa
rather complicated structures as shown in Fig. 2. We n
that it has a somewhat ‘‘self-similar’’ repeating patter
while shrinking towards the small velocity regime, althoug
the pattern is not very regular. A blowup of the incomin
velocity region indicated by the arrow in Fig. 2 is shown
Fig. 3. Clearly, the self-similar pattern persists. This comp
cated dependence of the escape velocity on the incom
velocity is a first glimpse of the complexity of the collisio
dynamics. Before turning to even more unusual phenome
we comment that, in general, it is difficult to define an in
stantaneous velocity on a lattice. Thus the concept of vel
ity in a lattice system is inherently in an average sense. O
in rare situations in which a solution possesses the conti
ous translational symmetry are we able to use the concep

FIG. 1. Trajectory of two colliding localized excitations. Afte
collision, these two excitations separate. Hereuau50.15, b51,
x0510.5, m51, andn520.1 in system~1!.
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the instantaneous velocity, such as in the case of the soli
solutions for the Ablowitz-Ladik equation. Bearing this in
mind, we obtained the incoming velocity of a localized ex
citation by measuring the time elapsed between the time
the localized excitation peak to arrive at a siten5n0 and the
time at the siten5n024, wheren0510 was used in our
measurements. Similarly, the escape velocity is computed
Vescape54/dt, wheredt is the time interval between the in-
stant when the localized excitation peak arrives at the s
n024 and the instant when it arrives atn0 .

One would expect that there are two different types o
states formed after collision, i.e., one being the escapi
states described above and the other being bound states w
the two localized excitations become trapped. The bou
states can be anticipated based on the following argument
the very small incoming velocity regime, localized excita

FIG. 2. Escape velocity of a localized excitation after colliding
with its mirror image as a function of the incoming velocity~m51
and n520.1!. The parameters for the initial profile~8! are b51
andx0510.5. The data of the incoming velocity in the region be
low the arrow are not shown.

FIG. 3. Escape velocity of a localized excitation after colliding
with its mirror image as a function of the incoming velocity with
the initial profile ~8! with b51 andx0510.5. This is a blowup of
Fig. 2 in the region indicated by the arrow in Fig. 2.m51 and
n520.1 in system~1!.
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56 7249RESONANCE IN THE COLLISION OF TWO DISCRETE . . .
tions have small kinetic energies. During the collision, the
two localized excitations may lose a sufficiently larg
amount of energy through radiation and they are no long
able to separate because their kinetic energy can no lon
overcome the binding energy. This is indeed the case, as
observed in our simulations. However, if there simply e
isted a velocity threshold below which a bound state
formed and above which two localized excitations esca
from each other after the collision, the dynamics would
rather conventional. What we found in the simulations pr
sents a far more intricate picture. First, we show an exam
of a bound state in Fig. 4 in which two localized excitation
collide and then bounce, separating from each other. Ho
ever, the interaction between the not-too-well separated
calized excitations attracts them back to execute a sec
collision. During this process, they continuously emit sma
amplitude radiations. Finally, they can no longer be wide
separated. Instead, they merge into a single breathing bo
state with a shape that changes from a two-peaked state
singly peaked state and vice versa, as seen in the last pa
the trajectory in Fig. 4. In Fig. 5 we show an example of th
advertised resonance phenomenon, that is, the formation
states of one of the above types interlaced between the o
type as a function of the incoming velocity. Fora520.090
for the localized excitation on the right-hand side of the fi
ure, the dotted trajectory shows a bound state. By increas
the incoming velocity, e.g., toa520.096, these two local-
ized excitations begin to separate permanently instead
forming a bound state after the first collision. However, upo
further increasing the incoming velocity, say, toa520.100,
a breathing bound state is again formed out of the collisio
In Fig. 6 we display the result of our comprehensive nume
cal search for this kind of resonant structure. In the simu
tions, the parameteruau was swept fromuau50.0156 upward,
corresponding to increasing incoming velocities startin
from Vin50.022 55. The increment ofa was 531025. For
incoming velocities below the critical valueVin,c50.1837
~above which we only have separating localized excitatio
as mentioned above!, we have found only one escape veloc
ity window sandwiched between the trapping regions,

FIG. 4. Upon collision, two localized excitations form a long
lived breathing bound state. The parameters for the initial condit
~8! are uau50.11 andb51. The system parameters arem51 and
n520.1. Dt is the time between the first and second collisions.
e

r
er

we
-
s
e
e
-
le

-
o-
nd
-

nd
o a
t of

of
er

-
ng

of
n

.
i-
-

g

s,

s

shown by the solid line in Fig. 6. Figure 6 plots two quant
ties as functions of the incoming velocity. One is the esca
velocity of the localized excitations~solid line! and the other
is Dt, the time between the first and the second collision~see
Fig. 4! for the trapped localized excitations in the trappin
region of the incoming velocity; here they coordinate of the
upper edge of the shaded area isDt scaled by a factor of
1000. In those trapping regions, the time interval between

n
FIG. 5. Trajectories of two colliding localized excitations wit

different incoming velocities. Foruau50.096, the two localized ex-
citations escape after the first collision. Foruau50.100, the two
localized excitations form a breathing bound state upon collisio
For comparison, a portion of the trajectory of the bound state
uau50.090~dotted line! is also shown.b51 andx0510.5 for the
initial profiles ~8! and m51 and n520.1 in system~1! for all
cases.

FIG. 6. Escape window in the trapping region. Here two qua
tities Vescapeand Dt, as functions of the incoming velocity, are
plotted. The solid line is the escape velocity of a localized exci
tion in the escape region of the incoming velocity. Thex coordinate
of the shaded area is the incoming velocity for the localized ex
tations trapped to form a breathing bound state. They coordinate of
the upper edge of the shaded area is the timeDt between the first
and second collisions scaled by a factor of 1000~see Fig. 4!. Here
b51 andx0510.5 for the initial profile~8!; m51 andn520.1 in
system~1!.
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first and the second collisions exhibits complex spiked stru
tures. One might suspect that those peaks can be reso
into further escape windows and trapping regions. We ha
searched those peak regions witha increments of 1027 and
have not detected any further escape windows. The sm
increment of this magnitude has already reached our num
cal limits and no further conclusion can be drawn about t
existence of those windows smaller than this increment si

We point out that the above resonance phenomenon is
restricted to equal amplitude localized excitation collision
In Figs. 7 and 8 two localized excitations with different am
plitudes collide and eventually pass through each other. W
can clearly see that their asymptotic velocities before a

FIG. 7. Case of two localized excitations with different ampl
tudes passing through each other after the collision. For the lar
amplitude excitationa150 andb151; for the low-amplitude exci-
tation, a250.071 003 andb250.25 for the initial profiles~8!,
respectively. The system parameters arem51 andn520.1. Peri-
odic boundary conditions are used with a total lattice sizeN5200.

FIG. 8. Case of two localized excitations with different ampl
tudes passing through each other after the collision. For the lar
amplitude excitation,a150 andb151; for the low-amplitude ex-
citation, a250.070 975 andb250.25. The system parameters ar
m51 andn520.1. Periodic boundary conditions are used with
total lattice sizeN5200.
-
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e
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after the collision are different, depending on the incoming
velocities. The localized excitation with the larger amplitude
initially is at rest. After the collision, it acquires kinetic en-
ergy and starts to translate, unlike in the integrable case in
which a soliton initially at rest will not be able to move at a
nonzero velocity after collision. In Fig. 9 the localized exci-
tation with the smaller amplitude has an incoming velocity
between those of the localized excitations in Figs. 7 and 8
Instead of passing through the large-amplitude localized ex
citation after the collision, it cannot penetrate and eventually
bounces off the large localized excitation. From preliminary
numerical results, we have not found any trapping case, i.e.
two localized excitations traveling together at the same ve-
locity to form a long-lived bound state after the collision.
There are numerical indications that such trapping states ma
exist but are probably very unstable, i.e., the binding energy
is likely to be too small to sustain a long-lived bound state.
Although we have not performed an extensive search in the
case of two localized excitations with unequal amplitudes,
the above examples already illustrate the rich complexity of
this collision dynamics.

To complement the collision of two localized excitations
with varying incoming velocities, we can alternatively fixa
and b for the initial localized excitations and tune the non-
integrable parametern in Eq. ~1!. For the collision of two
equal-amplitude localized excitations, we have again found
resonance phenomenon in then axis as shown in Fig. 10, for
which we used an increment of 1024 in n in our search. For
n.0, it appears that the resonance structure is relatively
simple: There exists a threshold inn above which there are
only bound states and below which the two solitons escape
from the collision region. Forn,0, there are trapping and
escape windows interlacing with each other. For the escap
velocity as a function ofn, we also observe a self-similar
pattern. We note that there is no new type of states observed
only the bound states and the escaping states discussed pr
viously.

e-

e-

FIG. 9. Collision of two localized excitations with different am-
plitudes, bouncing off each other after the collision. For the excita-
tion with the large amplitude,a50 andb51; for the excitation
with the low amplitude,a250.071 000 andb250.25 for the initial
profile ~8!, respectively. The system parameters arem51 and
n520.1. Periodic boundary conditions are used withN5200.
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56 7251RESONANCE IN THE COLLISION OF TWO DISCRETE . . .
We emphasize that, for both cases, i.e., varyinga andn,
we have not detected any escapes after the second collis
This observation, combined with the fact that all the escap
in the escape window in Fig. 6 are characterized by esca
immediately following the first collision, suggests that th

FIG. 10. Resonance structure. Two quantitiesVescapeandDt are
plotted here as functions ofn. The solid line is the escape velocity
of a localized excitation after collision in the escape region ofn.
Thex coordinate in the shaded area is then for which two localized
excitations are trapped to form a breathing bound state in syst
~1!. The y coordinate of the upper edge of the shaded area isDt
scaled by a factor of 1000~see Fig. 4!. Hereb51 anduau50.096
for the initial profile ~8!.
R

a
. D

v.

n

on.
s

pe

mechanism for our resonance structure is different from t
of the kink-antikink collision in, e.g., the continuousf4 sys-
tem or the modified double sine-Gordon systems@35–37#.
There, the delicate timing in the energy exchange betw
the translational mode and the internal shape mode of a
~or an antikink! is responsible for the resonant velocity win
dows. As a consequence, it is necessary for the kink
antikink in the resonant region to collide at least twice befo
they can escape from each other and separate indefini
This is also true of the case in which a kink interacts with
point impurity and the resonating interaction is signified
two consecutive collisions before the kink can esca
@38,39#. In the present case, it appears that the energy
change is subtler, involving the translational energy and
shape modes of the fully formed bound state instead of
shape modes of the individual incoming localized exci
tions. The nature of these bound states is being investig
currently and will be reported on later.

In conclusion, we have numerically studied the collisi
dynamics of two solitonlike, localized excitations in the di
crete nonlinear Schro¨dinger chain, system~1!. Our simula-
tions have revealed a different resonance phenomenon o
terlacing regions of bound states and escaping final state
two localized excitations with a sensitive dependence on
incoming velocities. Our results indicate that the resona
phenomenon in this system might be different from that
the kink-antikink collisions previously studied inf4 and re-
lated systems. We emphasized that the resonance in the
tem ~1! is a combined effect of discreteness and noninteg
bility.
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