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Resonance in the collision of two discrete intrinsic localized excitations
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The collision dynamics of two solitonlike localized excitations in a nonintegrable discrete
(1+1)-dimensional nonlinear Schitimger system is studied numerically. It is demonstrated that the collision
dynamics exhibits a complicated resonance structure of interlacing bound-state regions and escape regions of
localized excitations with a sensitive dependence on the incoming energies of the localized excitations. We
emphasize that this resonance is a combined effect of discreteness and nonintegrability of the system and
contrast it with topological kink-antikink collisions ip* and related systempS1063-651X97)06811-§

PACS numbe(s): 42.65.Tg, 63.20.Pw, 46.18z, 42.81.Dp

Intrinsic localized excitations are a longstanding and im-crete nonlinear Schainger(DNLS) system, which is a con-
portant topic in the context of intrinsic collapse to self- tinuously tunable, generally nonintegrable system, with the
localized states in nonlinear systems, which has wide physieompletely integrable Ablowitz-Ladik equation as one limit
cal significance in plasmas, fluids, optics, solid-state, andl9,29]. For this system, the existence, stability, and various
biomolecular modeling1,2]. Pure (14 1)-dimensional inte- other aspects of a single solitonlike localized excitation have
grable systems provide rigorous examples of self-localizedbeen clarified using perturbation theories based on, e.g., the
states in the form of solitons and are by now well understoodnverse scattering transform and Melnikov analy€s30-
[3,4]. In particular, the interaction of these solitons can be33]. As these works have demonstrated, this system encap-
simply described as pure elastic collisions with “space” sulates many important issues involved in studies of intrinsic
shifts. The interaction dynamics is simple in the sense thabcalized excitations in a theoretical framework of concep-
solitons do not interact in the nonlinear spectral space frontual simplicity and analytical tractability. We emphasize that
the inverse scattering transfori&T) viewpoint. In a realis- this DNLS system has very rich dynamics, which the system
tic physical setting, complete integrability is often destroyedin its integrable limit does not possess either in the discrete
by physical “perturbations” such as integrability-breaking form or in the continuous limit. On the basis of a careful
terms in partial differential equations, dimensionality, latticenumerical study, we will demonstrate below that the interac-
discreteness, disorder, and fluctuatiggsantum and ther- tion of two localized excitations has a complicated resonance
mal) [1,2,5. As a consequence, mechanisms controlling thestructure. Namely, the collision process exhibits a series of
collapse to stable localized excitations become physicallyesonant trappingbound statesand escapingtransmissioh
more complicated and are mathematically less well underef the localized excitations with a sensitive dependence on
stood. Recentlydiscreteintrinsic localized excitations have their incoming energies. This should be contrasted with the
been increasingly studied, as they appear to be generally réwo integrable cases. On the one hand, the interaction of two
bust objects and their existence does not require mathemaselitons in the Ablowitz-Ladik system is elastic due to inte-
cally stringent integrability6]. The existence and stability of grability, therefore lending such a resonance structure impos-
these excitations are consequences of the combined effect sible. On the other hand, the interaction of two solitons in the
discreteness and nonlinearity of the sys{@m9]. Some rig- continuous limit, in which our system becomes the com-
orous mathematical results regarding their existence and staletely integrable nonlinear Schtimger equation, has again
bility have been obtained via, e.g., the application of implicitsimple elastic dynamics without any resonance. Thus this
function theorem$10—12. Many aspects of the intrinsic lo- resonance structure is a combined effect of discreteness and
calized states have been studied by the rotating-wave amonintegrability. In the following, we will first briefly review
proximation[8,13] or numerically more exact methods such the dynamics of a single localized excitation to set the stage
as the Newton iteration methgd4-16. Full dynamical for our main work, i.e., the collision dynamics of two such
simulations have also been performed to illustrate dynamicadtructures. Then we will present detailed results of the reso-
properties of these excitatiolisee, e.9.[l17—27). However, nance structure in this system.
most of these studies have concentrated mainly on single The one-dimensional DNLS equation we study9$
discrete localized excitations. The question of how these ex-
citations interact is yet to receive much attentj@g]. Obvi- L
ously, addressing this issue is a natural and important step in Yn=—(ni1t -0~ [0(Pni1t dn-1) +20¢]]0)%,
extending our understanding of the dynamics of discrete lo- @)
calized excitations in spite of analytical and numerical diffi-
culties involved in this pursuit. where the overdot stands for the derivative with respect to

In the present work, we undertake a detailed numericatimet, n is a site index, an@g=0. This system possesses the
study of the collision of two localized excitations in a dis- Hamiltonian
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This gives rise to the following picture for the motion of a
single localized structure: It can be regarded as a point par-
ticle described by the general coordinatgsaf) in an effec-

tive periodic potential, i.e., a Peierls-Nabarro barrier.

Next we turn to the demonstration of the richness of the
system(1) through the interaction dynamics tfo localized
excitations using full numerical simulations of the system
(1). As noted above, for=0, the integrable limit of Eq(1),
two solitons will simply collide elastically, passing through
each other with the same asymptotic velocity, before and
after collision, at large separations. The collision is signified
only by a “space shift” in the collision region. Likewise, on
approaching the continuum limit, the nonintegrability be-
comes weaker and weaker and we again have an integrable
soliton collision case in the continuum limit. Due to nonin-

is also conserved and serves as a norm. These conserviedjrability and discreteness, it turns out that collisions of two
quantities were frequently monitored in our numerical simu-ocalized excitations withv# 0 have a very complicated dy-

lations to ensure accuracy of the numerical schemes. In theamics and manifest intriguing resonance structures. As we
integrable Ablowitz-Ladik limit, a single localized excitation can see below, some subtleties in the collisions indicate a

is an Ablowitz-Ladik soliton 9]
Yn=sinh B sechig(n—x)Je'*" "X "7, (8

the parameters of which obey

B=0, 9
a=0, (10
X= 2 s;h@ sin a, (11

. ~sin
o=2 Ccosy cosiB+2a sina

5

In the perturbed case, to the first orderurin the adiabatic

12

different mechanism from that which has been learned in the
collision dynamics of a topological kink and an antikink in
the continuousp* system, modified double sine-Gordon sys-
tems, or related kink interactions with a point impuriss—

39].

First we discuss the collision of two localized excitations
with equal amplitudes. The numerical simulation of this dy-
namics in systentl) is implemented as follows. The lattice
of the system is indexed from=0 ton=N-— 1. The bound-
ary conditions are reflecting, i.e.,

1=, Yn2=Un-

With these boundary conditions, in the regior 0, we cre-
ate a mirror image of the system 0. As justified above
by perturbation theory, we use the functional fo{@nas our
initial localized state situated a&,, which is chosen suffi-

(19

approximation, an IST-based perturbation theory leads to gjently far fromn=0 that we can view the initial condition

localized excitation with the same functional form as EBj.

for the system as two widely separated localized excitations

and perturbed dynamics for the parameters. We will use thigone is the mirror image in the<0 region with exponen-
functional form(8) as the initial condition for the localized tja|ly small overlap aroundh=0. Since we set the collision

excitations in our numerical simulatiorisee below. The
dynamics of the parameters now becof3d] (for details,
see[30])

B=0, (13)
i J
A= — & Heﬁ, (14)
d
X=—— Het (15)

region neam=0, the other end of the system has basically
vanishingy,, . For t>0, this localized excitation travels to-
wardsn=0 and collides with its mirror image. We chose a
sufficiently largeN to avoid boundary effects, such as re-
flected radiations from théd—1 end. In our simulations,
typically, N=500 was used with the choice gf~1 for the
localized excitation(8). This size is sufficiently large to
minimize boundary effects in the collision region neat 0
while it is not too large to exact our computing resources.
Now we describe the resonance phenomenon in the case

of varying a. In simulations, the nonintegrable parameter
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FIG. 1. Trajectory of two colliding localized excitations. After
collision, these two excitations separate. H¢ngé=0.15, B=1,
Xo=10.5, u=1, andv=—0.1 in system(1).

FIG. 2. Escape velocity of a localized excitation after colliding
with its mirror image as a function of the incoming velocijy=1
and v=—0.1). The parameters for the initial profil8) are =1

should not be too large; otherwise a localized state initializecﬁcl:\],\(lJI )t(k?:;?rfw z]: :;tzhogvme incoming velocity in the region be-
with the soliton form(8) will change its shape greatly by '

emitting strong radiation and the evolution of this localized . instantaneous velocity, such as in the case of the soliton

stats will havebsevere ra((:_ijla]:uve efferc]:tsj Thus _0'1|W&_‘S solutions for the Ablowitz-Ladik equation. Bearing this in
used. As can be expected, far<ar, the incoming Velocity  ing we obtained the incoming velocity of a localized ex-

?f the Ioc;allzedh_exmtatl.or(]j |sda m]c(?not%n]cally |ncrea§|ng|:; citation by measuring the time elapsed between the time for
unction of [a|. This was indeed confirmed in our numerica the localized excitation peak to arrive at a site ny and the

sm_t:la:poni we ctor“_rolletc; the |In|t|alfvtehIOC|ty of atlé)cghzed time at the siten=ngy—4, whereny=10 was used in our
lexm ation by con lro .'tfﬁg € vabue 0 q tﬁ p:ara;tme Ir Orl. measurements. Similarly, the escape velocity is computed by
arge incoming veloctlies, we observed thal, atter a locallze escaps 4/6t, where ét is the time interval between the in-

excitation collides with its mirror image, 'Fhey separate. T_heystant when the localized excitation peak arrives at the site
do not return to execute a second collision. A typical trajec-

: : At . .~ Ng—4 and the instant when it arrives 1ag.
tory of this case is shown in .F.'g' 1. The trajectory shovyn S~ one would expect that there are two different types of
the temporal trace of the position of the maximum density o

The int lated ! int at timds obtained fstates formed after collision, i.e., one being the escaping
W“l' € Intérpolated maximum point at uimas obtaine states described above and the other being bound states when
via the parabolic Simpson interpolation algorithm, using th

first three | A litud £ th I €he two localized excitations become trapped. The bound
Irst three largest amplitudes out of the se‘5{|qﬁn(t)|, all n} states can be anticipated based on the following argument. In
and treatingn as if it were a continuous variable, whence the

i . . ) : ~the very small incoming velocity regime, localized excita-
position of the interpolated maximum is a continuous vari-
able. Note that we only simulated the syst€m for n=0
and that then<<0 portion of Fig. 1 is merely a mirror reflec-
tion of the right-hand side of the figure, plotted graphically to  o1es |
give a sense of symmetry. This graphical convention will be
used for all the remaining trajectory plots. For an incoming
velocity greater than the critical valu¥,, .=0.1837, only 0145 ¢
this type of separating state is observed. The measured €
cape velocity as a function of the incoming velocity displays
rather complicated structures as shown in Fig. 2. We nott > o.125 -
that it has a somewhat “self-similar” repeating pattern,
while shrinking towards the small velocity regime, although
the pattern is not very regular. A blowup of the incoming 0.105 |
velocity region indicated by the arrow in Fig. 2 is shown in
Fig. 3. Clearly, the self-similar pattern persists. This compli- M
cated dependence of the escape velocity on the incomin 008 51560 0570 01580 01890 51900
velocity is a first glimpse of the complexity of the collision v,
dynamics. Before turning to even more unusual phenomena,
we comment that, in general, it is difficult to define an in-  FIG. 3. Escape velocity of a localized excitation after colliding
stantaneous velocity on a lattice. Thus the concept of veloawith its mirror image as a function of the incoming velocity with
ity in a lattice system is inherently in an average sense. Onlyhe initial profile (8) with 8=1 andx,=10.5. This is a blowup of
in rare situations in which a solution possesses the continuFig. 2 in the region indicated by the arrow in Fig. 2=1 and
ous translational symmetry are we able to use the concept of= —0.1 in system(1).
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FIG. 4. Upon collision, two localized excitations form a long-  FIG. 5. Trajectories of two colliding localized excitations with

lived breathing bound state. The parameters for the initial conditiordifferent incoming velocities. Fdix|=0.096, the two localized ex-
(8) are|a|=0.11 andB=1. The system parameters gie=1 and citations escape after the first collision. Fer|=0.100, the two
v=—0.1. At is the time between the first and second collisions. |ocalized excitations form a breathing bound state upon collision.

. L . . . For comparison, a portion of the trajectory of the bound state for
tions have small kinetic energies. During the collision, thes‘ffa|=0.090(dotted ling is also showng=1 andx,=10.5 for the

two localized excitations may .Iose a sufficiently large jnitial profiles (8) and x=1 and v=—0.1 in system(1) for all
amount of energy through radiation and they are no longegases.
able to separate because their kinetic energy can no longer

overcome the binding energy. This is indeed the case, as Wgyown by the solid line in Fig. 6. Figure 6 plots two quanti-
observed in our simulations. However, if there simply ex-tjes as functions of the incoming velocity. One is the escape
isted a velocity threshold below which a bound state is g|ocity of the localized excitationsolid line) and the other
formed and above which two localized excitations escapeg At the time between the first and the second colligkme

from each other after the collision, the dynamics would beFig. 4) for the trapped localized excitations in the trapping

rather conventional. What we found in the simulations pre'region of the incoming velocity; here thecoordinate of the

sents a far more intricate picture. First, we show an examplﬁpper edge of the shaded areaAis scaled by a factor of

of a bound state in Fig. 4 in which two localized excitations 190 | those trapping regions, the time interval between the
collide and then bounce, separating from each other. How-

ever, the interaction between the not-too-well separated lo-
calized excitations attracts them back to execute a secor °%
collision. During this process, they continuously emit small-
amplitude radiations. Finally, they can no longer be widely
separated. Instead, they merge into a single breathing bour
state with a shape that changes from a two-peaked state to
singly peaked state and vice versa, as seen in the last part g
the trajectory in Fig. 4. In Fig. 5 we show an example of the 2
advertised resonance phenomenon, that is, the formation « 33
states of one of the above types interlaced between the oth _ 020
type as a function of the incoming velocity. Fe= —0.090

for the localized excitation on the right-hand side of the fig-
ure, the dotted trajectory shows a bound state. By increasin
the incoming velocity, e.g., ta=—0.096, these two local-
ized excitations begin to separate permanently instead ¢
forming a bound state after the first collision. However, upon
further increasing the incoming velocity, say,d¢e- — 0.100,

a brgathing bpund state is again formed out of the CO'”S"’F‘- FIG. 6. Escape window in the trapping region. Here two quan-
In Fig. 6 we display the result of our comprehensive numeri-;

A . es Vescape@nd At, as functions of the incoming velocity, are
cal search for this kind of resonant structure. In the SlrnUIaTolotted. The solid line is the escape velocity of a localized excita-

tions, the parametes| was swept froma|=0.0156 upward,  tion in the escape region of the incoming velocity. Sheoordinate
corresponding to increasing incoming velocities startingof the shaded area is the incoming velocity for the localized exci-
from V;,=0.022 55. The increment af was 5<10™°. FOr tations trapped to form a breathing bound state. Jfeeordinate of
incoming velocities below the critical valu¥;, ;:=0.1837  the upper edge of the shaded area is the tihdetween the first
(above which we only have separating localized excitationsand second collisions scaled by a factor of 1068e Fig. 4 Here

as mentioned aboyewe have found only one escape veloc- =1 andx,=10.5 for the initial profile(8); u=1 andv=—0.1in

ity window sandwiched between the trapping regions, asystem(l).

0.40

0.10

0.165
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FIG. 7. Case of two localized excitations with different ampli- lisi ¢ locali L ith diff
tudes passing through each other after the collision. For the Iarge-l_ F(le' 95 Co Iston ?f twohocil |zedf excr|1tat|orlll'§ \_N't di erﬁnt am-
amplitude excitationy; =0 andB;=1; for the low-amplitude exci- P itudes, bouncing off each other after the collision. For the excita-

tation, a,=0.071 003 andB,=0.25 for the initial profiles(g), 0N With the large amplitudeq =0 and =1; for the excitation
respectively. The system parameters arel andv=—0.1. Peri- with the low amplitude,=0.071 000 ang3,=0.25 for the initial

odic boundary conditions are used with a total lattice $ize200. profile (8), re_spgctively. The sys_te_m parameters _a:retl and
v=—0.1. Periodic boundary conditions are used Wi 200.

first and the second collisions exhibits complex spiked struc- . ) . . .
tures. One might suspect that those peaks can be resolvaifer Fhe collision are d|ffergnt,_depgnd|ng on the incoming
into further escape windows and trapping regions. We hav elocities. The localized excitation with the larger amplitude
searched those peak regions witfincrements of 107 and initially is at rest. After the collision, it acquires kinetic en-
have not detected any further escape windows. The smafi'9y and starts to _translate, unl_lke in the integrable case in
increment of this magnitude has already reached our numer//Nich @ soliton initially at rest will not be able to move at a
cal limits and no further conclusion can be drawn about thd'©NZ€0 velocity after colhspn. In Fig. 9 the IOC"’}I'Zed excl-
existence of those windows smaller than this increment siz&2ton with the smaller amplltude h‘?‘s an incoming velocity
We point out that the above resonance phenomenon is n tween those .Of the localized ex0|tat|on§ in Figs. 7 and 8.
restricted to equal amplitude localized excitation collisions. nstgad of passing thr_ough the large-amplitude localized ex-
In Figs. 7 and 8 two localized excitations with different am- Citation after the collision, it cannot penetrate and eventually
plitudes collide and eventually pass through each other. Wgounces off the large localized excitation. From preliminary

can clearly see that their asymptotic velocities before an@umerlca_l results,_ we have not_found any trapping case, i.e.,
two localized excitations traveling together at the same ve-

locity to form a long-lived bound state after the collision.
There are numerical indications that such trapping states may
exist but are probably very unstable, i.e., the binding energy
is likely to be too small to sustain a long-lived bound state.
Although we have not performed an extensive search in the
case of two localized excitations with unequal amplitudes,
the above examples already illustrate the rich complexity of
this collision dynamics.

To complement the collision of two localized excitations
with varying incoming velocities, we can alternatively fix
and g for the initial localized excitations and tune the non-
integrable parameter in Eq. (1). For the collision of two
equal-amplitude localized excitations, we have again found
resonance phenomenon in thaxis as shown in Fig. 10, for
which we used an increment of 1Hin v in our search. For
v>0, it appears that the resonance structure is relatively
simple: There exists a threshold inabove which there are
only bound states and below which the two solitons escape

FIG. 8. Case of two localized excitations with different ampli- from the collision region. Fow<0, there are trapping and
tudes passing through each other after the collision. For the largeescape windows interlacing with each other. For the escape
amplitude excitationa; =0 and8,=1; for the low-amplitude ex- Vvelocity as a function ofv, we also observe a self-similar
citation, a,=0.070 975 and3,=0.25. The system parameters are pattern. We note that there is no new type of states observed,
n=1 andv=—0.1. Periodic boundary conditions are used with aonly the bound states and the escaping states discussed pre-
total lattice sizeN=200. viously.
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0.40 ey : mechanism for our resonance structure is different from that
of the kink-antikink collision in, e.g., the continuoygg' sys-
tem or the modified double sine-Gordon systeiB5—37.
There, the delicate timing in the energy exchange between
the translational mode and the internal shape mode of a kink
(or an antikink is responsible for the resonant velocity win-
Wf \’A‘m, dov_vs_. A_s a consequence, it is necessary for thg kink and
Uw k! antikink in the resonant region to collide at least twice before
?m I they can escape from each other and separate indefinitely.
This is also true of the case in which a kink interacts with a
point impurity and the resonating interaction is signified by
two consecutive collisions before the kink can escape
[38,39. In the present case, it appears that the energy ex-
oo — = change is subtler, involving the translational energy and the
v shape modes of the fully formed bound state instead of the
shape modes of the individual incoming localized excita-
FIG. 10. Resonance structure. Two quantitiés..,.andAt are  tions. The nature of these bound states is being investigated
plotted here as functions of The solid line is the escape velocity currently and will be reported on later.
of a localized excitation after collision in the escape regiorv.of In conclusion, we have numerically studied the collision
Thex coordinate in the shaded area is thi®r which two localized dynamics of two solitonlike, localized excitations in the dis-
excitations are trapped to form a breathing bound state in systegrete nonlinear Schdinger chain, systenil). Our simula-
(1). They coordinate of the upper edge of the shaded arektis  tjons have revealed a different resonance phenomenon of in-
scaled by a factor of 100@ee Fig. 4 Herep=1 and|a|=0.096  (gjacing regions of bound states and escaping final states of
for the initial profile (8). two localized excitations with a sensitive dependence on the
incoming velocities. Our results indicate that the resonance
We emphasize that, for both cases, i.e., varyingnd v, phenomenon in this system might be different from that of
we have not detected any escapes after the second collisicthe kink-antikink collisions previously studied i* and re-
This observation, combined with the fact that all the escapekated systems. We emphasized that the resonance in the sys-
in the escape window in Fig. 6 are characterized by escapem (1) is a combined effect of discreteness and nonintegra-
immediately following the first collision, suggests that the bility.
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